Crystal Structure

Communications

ISSN 0108-2701

1,3-Propanediammonium bis(3^{\prime}-nitro-trans-cinnamate) and trans-1,2-cyclohexanediammonium bis(3^{\prime}-nitro-trans-cinnamate)

Hosomi, Ohba and Ito

Electronic paper

This paper is published electronically. It meets the data-validation criteria for publication in Acta Crystallographica Section C. The submission has been checked by a Section C Co-editor though the text in the 'Comments' section is the responsibility of the authors.
© 2000 International Union of Crystallography • Printed in Great Britain - all rights reserved

Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

1,3-Propanediammonium bis(3'-nitro-trans-cinnamate) and trans-1,2-cyclohexanediammonium bis(3^{\prime}-nitro-transcinnamate)

Hiroyuki Hosomi, ${ }^{\text {a }}$ Shigeru Ohba ${ }^{\text {a* }}$ and Yoshikatsu Ito ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Chemistry, Faculty of Science and Technology, Keio University, Hiyoshi 3-14-1, Kohoku-ku, Yokohama 223-8522, Japan, and ${ }^{\mathbf{b}}$ Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 606-8501, Japan
Correspondence e-mail: ohba@chem.keio.ac.jp

Received 17 February 2000
Accepted 20 April 2000
Data validation number: IUC0000125
In the title two adducts, $\mathrm{C}_{3} \mathrm{H}_{12} \mathrm{~N}_{2}{ }^{2+} \cdot 2 \mathrm{C}_{9} \mathrm{H}_{6} \mathrm{NO}_{4}^{-}$, (I), and $\mathrm{C}_{6} \mathrm{H}_{16} \mathrm{~N}_{2}{ }^{2+} \cdot 2 \mathrm{C}_{9} \mathrm{H}_{6} \mathrm{NO}_{4}^{-}$, (II), hydrogen bonds between the diammonium and carboxylate ions form a two-dimensional network parallel to the $a b$ plane in (I) and one-dimensional chains along the c axis in (II). The cyclohexanediammonium ion in (II) has a crystallographic twofold axis.

Comment

The crystal structure and photoreactivity of ethylenediammonium bis(3^{\prime}-nitro-trans-cinnnamate) was reported by Ito et al. (1995). The structures of 1,3-propanediammonium bis(3'-nitro-trans-cinnamate) \{IUPAC name: propane-1,3-diammonium bis[(E)-3-(3-nitrophenyl)propenoate] $]$, (I), and trans-1,2cyclohexanediammonium bis(3^{\prime}-nitro-trans-cinnamate) \{IUPAC name: trans-cyclohexane-1,2-diammonium bis $[(E)$-3-(3nitrophenyl)propenoate]\}, (II), are reported here.

(I)

(II)

Experimental

Ether/methanol or ether/ethanol was used as the solvent for mixing and recrystallization.

Compound (I)

Crystal data
$\mathrm{C}_{3} \mathrm{H}_{12} \mathrm{~N}_{2}{ }^{2+} \cdot 2 \mathrm{C}_{9} \mathrm{H}_{6} \mathrm{NO}_{4}{ }^{-}$
$M_{r}=460.44$
Orthorhombic, Pbca
$a=7.136$ (3) A
$b=23.710$ (3) \AA
$c=25.964(4) \AA$
$V=4393.0(18) \AA^{3}$
$Z=8$
$D_{x}=1.392 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 25 reflections
$\theta=12.3-14.8^{\circ}$
$\mu=0.108 \mathrm{~mm}^{-1}$
$T=298$ (1) K
Prism, pale yellow
$0.7 \times 0.4 \times 0.4 \mathrm{~mm}$

Data collection

Rigaku AFC-7R diffractometer ω scans
5308 measured reflections
5040 independent reflections
3317 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.011$
$\theta_{\text {max }}=27.5^{\circ}$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0829 P)^{2}\right. \\
& \quad+1.5750 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.54 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.27 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$ for (I).

O1-C13	$1.245(2)$	O6-C22	$1.259(3)$
O2-C13	$1.250(3)$	O7-N10	$1.213(3)$
O3-N9	$1.205(4)$	O8-N10	$1.219(3)$
O4-N9	$1.219(3)$	N11-C31	$1.484(3)$
O5-C22	$1.243(3)$	N12-C33	$1.483(3)$
O3-N9-O4	$123.6(2)$	O1-C13-O2	$125.8(2)$
O7-N10-O8	$124.1(2)$	O5-C22-O6	$124.9(2)$

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$ for (I).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 11-\mathrm{H} 11 A \cdots \mathrm{O} 2$	$0.87(3)$	$1.96(3)$	$2.782(2)$	$158(2)$
$\mathrm{N} 11-\mathrm{H} 11 B \cdots \mathrm{O}^{\mathrm{i}}$	$0.99(3)$	$1.77(3)$	$2.731(3)$	$164(2)$
$\mathrm{N} 11-\mathrm{H} 11 C \cdots \mathrm{O}^{\text {ii }}$	$0.84(3)$	$2.11(2)$	$2.830(3)$	$144(2)$
$\mathrm{N} 12-\mathrm{H} 12 A \cdots \mathrm{O}^{\text {iii }}$	$0.90(2)$	$1.94(2)$	$2.820(3)$	$164(2)$
$\mathrm{N} 12-\mathrm{H} 12 B \cdots \mathrm{O}^{\text {iv }}$	$0.83(2)$	$1.99(2)$	$2.816(2)$	$174(2)$
$\mathrm{N} 12-\mathrm{H} 12 C \cdots \mathrm{O}^{\mathrm{v}}$	$0.98(2)$	$1.80(2)$	$2.756(2)$	$163(2)$
Symmetry codes: (i)	$\frac{1}{2}+x, y, \frac{1}{2}-z ;$ (ii)	$2-x, 1-y,-z ;$ (iii) $x-\frac{1}{2}, y, \frac{1}{2}-z ;($ (iv $)$		
$x, \frac{1}{2}-y, z-\frac{1}{2} ;(\mathrm{v}) 1-x, 1-y,-z$.				

Compound (II)

Crystal data

$\mathrm{C}_{6} \mathrm{H}_{16} \mathrm{~N}_{2}{ }^{2+} \cdot 2 \mathrm{C}_{9} \mathrm{H}_{6} \mathrm{NO}_{4}{ }^{-}$
$M_{r}=500.51$
Orthorhombic, Pbcn
$a=26.919$ (4) \AA
$b=7.572(3) \AA$
$c=11.966$ (3) \AA
$V=2439.1(10) \AA^{3}$
$Z=4$
$D_{x}=1.363 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 25
reflections
$\theta=12.2-14.6^{\circ}$
$\mu=0.103 \mathrm{~mm}^{-1}$
$T=298$ (1) K
Prism, colourless
$0.7 \times 0.3 \times 0.3 \mathrm{~mm}$

Data collection
Rigaku AFC-7R diffractometer ω scans
2942 measured reflections
2798 independent reflections
1507 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.018$
$\theta_{\text {max }}=27.5^{\circ}$

Refinement

Refinement on F^{2}
$R(F)=0.074$
$w R\left(F^{2}\right)=0.190$
$S=1.77$
2798 reflections
183 parameters
$h=0 \rightarrow 35$
$k=-10 \rightarrow 3$
$l=0 \rightarrow 16$
3 standard reflections every 150 reflections intensity decay: 0.7\%

H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.05 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=0.44 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.28$ e \AA^{-3}

Table 3
Selected geometric parameters ($\left({ }^{\circ},^{\circ}\right.$) for (II).

$\mathrm{O} 1-\mathrm{C} 7$	$1.233(4)$	$\mathrm{O} 4-\mathrm{N} 5$	$1.207(4)$
$\mathrm{O} 2-\mathrm{C} 7$	$1.248(3)$	$\mathrm{N} 6-\mathrm{C} 16$	$1.470(4)$
$\mathrm{O} 3-\mathrm{N} 5$	$1.207(6)$		
$\mathrm{O} 3-\mathrm{N} 5-\mathrm{O} 4$	$124.1(3)$	$\mathrm{O} 1-\mathrm{C} 7-\mathrm{O} 2$	$125.3(2)$

Table 4
Hydrogen-bonding geometry $\left({ }^{\circ},{ }^{\circ}\right)$ for (II).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N6-H6A $\cdots \mathrm{O} 1^{\mathrm{i}}$	$0.95(3)$	$1.80(3)$	$2.723(3)$	$166(3)$
N6-H6B H^{2}	$0.90(3)$	$1.89(3)$	$2.786(3)$	$170(2)$
N6-H6C $\cdots \mathrm{O} 2^{\mathrm{ii}}$	$0.74(3)$	$2.09(3)$	$2.771(3)$	$153(3)$

Symmetry codes: (i) $x,-y, \frac{1}{2}+z$; (ii) $-x,-y, 1-z$.
In (II), there is an orientational disorder of the $\mathrm{C}=\mathrm{C}$ double bond of the 3^{\prime}-nitro-cinnamate ion. The occupancy factors were 0.768 (9) and 0.232 (9) for $\mathrm{C} 8 / \mathrm{C} 9$ and $\mathrm{C} 8^{*} / \mathrm{C} 9^{*}$, respectively. The H atoms bonded to N11 and N12 of (I), and N6 of (II) were located from difference syntheses and were refined isotropically. The $\mathrm{N}-\mathrm{H}$ bond distances are 0.83 (2)-0.99 (3) \AA in (I) and 0.74 (3) -0.95 (3) \AA in (II). The other H -atom positional parameters were calculated geometrically and fixed with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}$ (parent atom).

For both compounds, data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1993); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 1999); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); software used to prepare material for publication: TEXSAN.

References

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435.
Ito, Y., Borecka, B., Olovsson, G., Trotter, J. \& Scheffer, J. R. (1995). Tetrahedron Lett. 36, 6087-6090.
Molecular Structure Corporation (1993). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Molecular Structure Corporation (1999). TEXSAN. Version 1.10. MSC, 3200
Research Forest Drive, The Woodlands, TX 77381, USA.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

